7 resultados para Fibroblasts

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

studies using UV as a source of DNA damage. However, even though unrepaired UV-induced DNA damages are related to mutagenesis, cell death and tumorigenesis, they do not explain phenotypes such as neurodegeneration and internal tumors observed in patients with syndromes like Xeroderma Pigmentosum (XP) and Cockayne Syndrome (CS) that are associated with NER deficiency. Recent evidences point to a role of NER in the repair of 8-oxodG, a typical substrate of Base Excision Repair (BER). Since deficiencies in BER result in genomic instability, neurodegenerative diseases and cancer, it was investigated in this research the impact of XPC deficiency on BER functions in human cells. It was analyzed both the expression and the cellular localization of APE1, OGG1 e PARP-1, the mainly BER enzymes, in different NER-deficient human fibroblasts. The endogenous levels of these enzymes are reduced in XPC deficient cells. Surprisingly, XP-C fibroblasts were more resistant to oxidative agents than the other NER deficient fibroblasts, despite presenting the highest of 8-oxodG. Furthermore, subtle changes in the nuclear and mitochondrial localization of APE1 were detected in XP-C fibroblasts. To confirm the impact of XPC deficiency in the regulation of APE1 and OGG1 expression and activity, we constructed a XPC-complemented cell line. Although the XPC complementation was only partial, we found that XPC-complemented cells presented increased levels of OGG1 than XPC-deficient cells. The extracts from XPC-complemented cells also presented an elevated OGG1 enzimatic activity. However, it was not observed changes in APE1 expression and activity in the XPCcomplemented cells. In addition, we found that full-length APE1 (37 kDa) and OGG1- α are in the mitochondria of XPC-deficient fibroblasts and XPC-complemented fibroblasts before and after induction of oxidative stress. On the other hand, the expression of APE1 and PARP-1 are not altered in brain and liver of XPC knockout mice. However, XPC deficiency changed the APE1 localization in hypoccampus and hypothalamus. We also observed a physical interaction between XPC and APE1 proteins in human cells. In conclusion, the data suggest that XPC protein has a role in the regulation of OGG1 expression and activity in human cells and is involved mainly in the regulation of APE1 localization in mice. Aditionally, the response of NER deficient cells under oxidative stress may not be only associated to the NER deficiency per se, but it may include the new functions of NER enzymes in regulation of expression and cell localization of BER proteins

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Proteinases are enzymes distributed widely founded in several organisms and perform many different functions, from maintaining homeostasis to the worsening of some diseases such as cancer, autoimmune diseases and infections. The proteins responsible of controlling the action of these enzymes are the inhibitors, that are classified based on their target proteases and are founded since simple organisms, such as bacteria, to higher organisms, such as larger plants and mammals. Plant proteinase inhibitors act by reducing or inactivating the activity of target proteases, thus, these proteins have been studied as potential tools in the treatment of diseases related to protease activities. In this context, an inhibitor of chymotrypsin from Erythrina velutina, called EvCI was previously purified and it was observed that this protein plays in vitro anticoagulant activity and anti-inflammatory activity in in vivo model. Aiming to reduce the environmental impact caused by the purification EvCI in high amounts and to facilitate the process of obtaining this protein, the recombinant chymotrypsin inhibitor from Eryhrina velutina was produced after cloning and expression in Escherichia coli. The bacteria were grown in LB medium and after induction of the expression this material was subjected to procedures for cell lysis and the product was applied on Nickel-affinity column. The proteins adsorbed were digested by thrombin and applied on Chymotrypsin-Sepharose affinity column, obtaining the purified inhibitor, named recEvCI. After electrophoresis, the recombinant inhibitor showed an approximately molecular mass of 17 kDa, and reduced the chymotrypsin and elastase activities in vitro. The recombinant inhibitor was sequenced and was found similar amino acids residues when compared to other inhibitors deposited in the database, with some modifications. recEvCI showed high stability under pH variations and reducing conditions, maintaining its activity around 80%. This protein increased the blood coagulation time in vitro by acting on the intrinsic pathway and did not show cytotoxicity against strains of mouse 3T3 fibroblasts and RAW 264.7 macrophages. recEvCI showed microbicide activity related to release of nitric oxide and consequently the activation of macrophages, futhermore having proinflammatory effects assessed by increased release of TNF-α. These results indicate that recEvCI can be biotechnologically used as a new tool in the control of coagulation-related diseases as well as can be an activating agent of the immune system in immunosuppressed individuals

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chitosan is being studied for use as dressing due their biological properties. Aiming to expand the use in biomedical applications, chitosan membranes were modified by plasma using the following gases: nitrogen (N2), methane (CH4), argon (Ar), oxygen (O2) and hydrogen (H2). The samples were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), contact angle, surface energy and water absorption test. Biological Tests were also performed, such as: test sterilization and proliferation of fibroblasts (3T3 line). Through SEM we observed morphological changes occurring during the plasma treatment, the formation of micro and nano-sized valleys. MFA was used to analyze different roughness parameters (Ra, Rp, Rz) and surface topography. It was found that the treated samples had an increase in surface roughness and sharp peaks. Methane plasma treatment decreased the hydrophilicity of the membranes and also the rate of water absorption, while the other treatments turned the membranes hydrophilic. The sterilization was effective in all treatment times with the following gases: Ar, N2 and H2. With respect to proliferation, all treatments showed an improvement in cell proliferation increased in a range 150% to 250% compared to untreated membrane. The highlights were the treatments with Ar 60 min, O2 60 min, CH4 15 min. Observing the results of the analyzes performed in this study, it appears that there is no single parameter that influences cell proliferation, but rather a set of ideal conditions that favor cell proliferation

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reactive oxygen species (ROS) are continuously generated and can be derived from cellular metabolism or induced by exogenous factors, in addition, have the capacity to damage molecules like DNA and proteins. BER is considered the main route of DNA damage oxidative repair, however, several studies have demonstrated the importance of the proteins participation of other ways to correct these injuries. NER enzymes deficiency, such as CSB and XPC, acting in the damage recognition step in the two subways this system influences the effectiveness of oxidative damage repair. However, the mechanisms by which cells deficient in these enzymes respond to oxidative stress and its consequences still need to be better understood. Thus, the aim of this study was to perform a proteomic analysis of cell lines proficient and deficient in NER, exposed to oxidative stress, in order to identify proteins involved, directly or not, in response to oxidative stress and DNA repair. For this, three strains of human fibroblasts, MRC5-SV, CS1AN (CSBdeficient) and XP4PA (XPC-deficient) were treated with photosensitized riboflavin and then carried out the differentially expressed proteins identification by mass spectrometry. From the results, it was observed in MRC5-SV increase expression in most of the proteins involved in cellular defense, an expected response to a normal cell line subjected to stress. CS1AN showed a response disjointed, it is not possible to establish many interactions between the proteins identified, may be one explanation for their sensitivity to treatment with riboflavin and other oxidants and increased cell death probably by induction of pro-apoptotic pathways. Already XP4PA showed higher expression of apoptosis-blocking proteins, as there was inhibition or reduced expression of others involved with the activation of this process, suggesting the activation of an anti-apoptotic mechanism in this lineage, which may help explain the high susceptibility to develop cancers in XPC individuals. These results also contribute to elucidate action mechanisms of NER in oxidative damage and the understanding of important routes in the oxidative stress correlation, repair and malignant tumors formation

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The antioxidant activity of aqueous extracts of five edible tropical fruits (Spondias lutea, Hancornia speciosa, Spondias purpurea, Manilkara zapota and Averrhoa carambola) was investigated using different methods. The amount of phenolic compounds was determined by the Folin-Ciocalteu reagent. The M. zapota had Total Antioxidant Capacity (TAC) higher than the other fruits. Extracts showed neither reducing power nor iron chelation (between 0.01 and 2.0 mg/mL). H. speciosa exhibited the highest superoxide scavenging activity (80%, 0.5 mg/mL). However, at high concentrations (8.0 mg/mL) only A. carambola, S. purpurea and S. lutea scavenging 100% of radicals formed. M. zapota and S. purpurea had higher phenolic compound levels and greater OH radical scavenging activity (92 %, 2.0 mg/mL). Antiproliferative activity was assessed with 3T3 fibroblasts and cervical tumor cells (HeLa). The most potent extract was S. purpurea (0.5 mg/mL), which inhibited HeLa cell proliferation by 52%. The most fruits showed antioxidant and antiproliferative properties, characterizing them as functional foods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The giant cell fibroma is a benign neoplasm characterized by the presence of mono, bi or multinucleate cells, which can have a connection to the presence of mast cells. This research aims to analyze, descriptively and comparatively, the immunohystochemistry expression of the tryptase in mast cells of the giant cell f ibroma, f ibrous hyperplasia and samples of the normal oral mucosa. Thirty cases of giant cell fibroma, ten cases of fibrous hyperplasia and ten cases of normal oral mucosa were selected for the analysis of the immunohistochemistry expression, determination of the number of present mast cells, as well as their location and shape. It could be stated that there was a statistically signif icant difference (p<0,001) in relation to the quantity of mast cells among other samples analyzed where the giant cell f ibroma presented lesser quantity of mast cell and the hyperplasia showed higher concentration of this cellular type. Although the oral mucosa has presented a higher quantity of mast cells when compared to the giant cells fibroma, these were found in usual locations in the connective tissue in normal tissues. There could be noticed a statistically significant difference in relation to the number of non-granulated mast cells (p<0,001). On the areas of fibrosis, we could observe a statistically signif icant difference (p<0,006) among the samples. In relation to the present mast cells in perivascular location, no statistically signif icant difference was found. On the morphological analysis there was a predominance of oval mast cells. It was concluded that despite of the fact there was a lesser quantity of mast cells present in cases of giant cell f ibroma, they appeared to have a stronger relation to the present giant fibroblasts in this lesions, around 59,62%, being also evidenced a strong relation between these cells and the fibrosis areas in both cases of giant cell f ibroma and f ibrous hyperplasias and samples of normal oral mucosa, used as control group in our study, confirming, this way, the role of the mast cells as fibrinogenous inductor

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Myofibroblasts are cells that exhibit a hybrid phenotype, sharing the morphological characteristics of fibroblasts and smooth muscle cells, which is acquired during a process called differentiation. These cells then start to express -SMA, a marker that can be used for their identification. Studies suggest that myofibroblasts are related to the aggressiveness of different tumors and that TGF-1 and IFN- play a role in myofibroblast differentiation, stimulating or inhibiting this differentiation, respectively. The objective of this study was to investigate the role of myofibroblasts in epithelial odontogenic tumors, correlating the presence of these cells with the aggressiveness of the tumor. Immunohistochemistry was used to evaluate the expression of TGF-1 and IFN- in myofibroblast differentiation, as well as the expression of MMP-13, which is activated by myofibroblasts, and of EMMPRIN (extracellular matrix metalloproteinase inducer) as a precursor of this MMP. The sample consisted of 20 solid ameloblastomas, 10 unicystic ameloblastomas, 20 odontogenic keratocysts, and 20 adenomatoid odontogenic tumors. For evaluation of myofibroblasts, anti- -SMA-immunoreactive cells were quantified in connective tissue close to the epithelium. Immunoexpression of TGF-1, IFN-, MMP-13 and EMMPRIN was evaluated in the epithelial and connective tissue components, attributing scores of 0 to 4. The results showed a higher concentration of myofibroblasts in solid ameloblastomas (mean of 30.55), followed by odontogenic keratocysts (22.50), unicystic ameloblastomas (20.80), and adenomatoid odontogenic tumors (19.15) (p=0.001). No significant correlation between TGF-1 and IFN- was observed during the process of myofibroblast differentiation. There was also no correlation between the quantity of myofibroblasts and MMP-13 expression. Significant correlations were found between MMP-13 and TGF-1 (r=0.087; p=0.011), between MMP- 13 and IFN- (r=0.348; p=0.003), as well as between EMMPRIN and MMP-13 (r=0.474; p<0.001) and between EMMPRIN and IFN- (r=0.393; p=0.001). The higher quantity of myofibroblasts observed in solid ameloblastomas, odontogenic keratocysts and unicystic ameloblastomas suggests that these cells are one of the factors responsible for the more aggressive biological behavior of these tumors, although the myofibroblast population was not correlated with TGF-1, IFN-, MMP-13 or EMMPRIN. The correlation between MMP- 13 and TGF-1 suggests that the latter induces the expression of this metalloproteinase. The present results also support the well-established role of EMMPRIN as an inducer of MMP-13. Furthermore, the relationship between EMMPRIN and IFN- and between MMP-13 and IFN- suggests synergism in the antifibrotic effect of these markers